Bookmark and Share                    Rechercher dans le site  |   Devenir membre
      Accueil       |      Forum     |    Livre D'or      |     Newsletter      |      Contactez-nous    |                                                                                                          Envoyer par mail  |   Imprimer
loading...

 
Génétique
Problèmes de génétique chez la levure
Cours de Génétique
 

Que pensez-vous de cet article ?

Page :  1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9 - 10

 

La levure de boulangerie, Saccharomyces cerevisiae, est un organisme unicellulaire haplodiplobiontique (cycle haploïde et cycle diploïde de même importance). Sa multiplication végétative est assurée par le bourgeonnement d’une cellule fille à partir d’une cellule mère, les deux cellules étant porteuses d’un noyau contenant le même lot de chromosomes à l’issue de la division nucléaire (mitose).

Deux cellules haploïdes, de signe sexuel différent MATa et MATα, sont capables de fusionner pour donner une cellule diploïde dont la multiplication végétative suit les mêmes règles que celles des cellules haploïdes.

L’étalement de cellules sur une boîte de milieu nutritif (au moins une source de carbone, une source d’azote et des éléments minéraux, plus d’éventuels apports en cas d’auxotrophie) aboutit à la formation de colonies, clones de cellules issues d’une cellule initiale.

Ces colonies sont bien individualisées si le nombre de cellules étalées est faible (quelques dizaines ou centaines); elles sont jointives et forment un tapis cellulaire continu dès que leur nombre est élevé (plusieurs milliers).

Pour croiser deux souches haploïdes de levure, il faut les mettre en contact sur une boîte de milieu, de manière à ce que des colonies diploïdes puissent s’y développer tout en prenant garde qu’aucun des deux parents haploïdes ne puissent s’y multiplier.

Dans ce but, on choisit toujours de croiser entre elles, sur un milieu minimum, des souches porteuses de mutations d’auxotrophie différentes, de sorte que les parents ne peuvent s’y développer alors que les diploïdes le peuvent, par complémentation fonctionnelle.

De ce fait, dans le croisement d’une souche mutante par une souche SSR, cette dernière est « sauvage » pour le (ou les) gène(s) impliqué(s) dans le phénotype étudié, mais les deux souches sont obligatoirement porteuses de mutations d’auxotrophie servant de « marqueurs de sélection des diploïdes ».

Pour étudier les produits de la méiose, il est nécessaire d’induire la sporulation de cellules diploïdes afin de recueillir les spores haploïdes.

L’analyse génétique des spores issues de la méiose est directe puisqu’elles sont cultivables.

Ce n’est pas le cas des gamètes chez les organismes diplobiontiques (cycle haploïde réduit aux gamètes, drosophile par exemple) où leur analyse génétique est indirectement réalisée par l’analyse d’une descendance issue du croisement entre le donneur des gamètes à analyser et un autre parent (F1 × F1 ou test-cross).

Les spores sont obtenues par étalement de cellules diploïdes sur un milieu de sporulation (pauvre en éléments azotés).

Les cellules diploïdes y arrêtent leur multiplication, passent en méiose et donnent un asque contenant quatre spores haploïdes en phase stationnaire.

La dissection de l’asque et l’étalement des spores de chaque asque, sur un milieu adéquat, permettent à chacune d’initier un développement clonal haploïde sous la forme de colonies individualisées.

Ce milieu de développement des spores doit contenir tous les éléments autorisant ce développement, notamment les apports correspondant aux auxotrophies parentales des marqueurs de sélection des diploïdes, qu’on retrouvera chez certaines des spores, plus les éléments correspondant éventuellement au(x) gène(s) étudié(s) dans le croisement.

Pour déterminer le génotype des spores haploïdes, il faut tester leur phénotype d’auxotrophie en repiquant quelques cellules de chaque colonie sur autant de milieux adéquats qu’il y a d’auxotrophies en jeu. On peut tester le signe sexuel en testant leur capacité à former des diploïdes avec une souche MATa ou MATα.

Le génotypage du (ou des) gène(s) étudié(s) dans le croisement est assuré par un test phénotypique spécifique.

Problèmes :

Problème 10.1

On connaît chez la levure Saccharomyces cerevisiae trois gènes, nommés A, B et C, dont les mutations peuvent conférer respectivement le phénotype [ade–] ou [leu–] ou [his–].

Ces trois phénotypes d’auxotrophie sont récessifs. Le gène A est situé sur le chromosome I, près du centromère, le gène B est situé sur le chromosome III, près du centromère, le gène C est distant du gène B de 20 unités de recombinaison.

On suppose qu’il n’y a, au plus qu’un crossing-over possible entre les locus des gènes B et C.

On croise une souche mutée dans les gènes A et C, de phénotype [ade–; his–], par une souche mutée dans le gène B, de phénotype [leu–].

1. Quelle est la composition du milieu de culture des deux souches parentales et celle du milieu de croisement ?

Justifiez votre réponse.

2. Vous ferez le schéma clair de chacun des scénarios possibles de la méiose, en précisant à chaque fois le génotype et le phénotype des spores qui en sont issus.

3. Quelles sont les fréquences respectives de chacun de ces scénarios et des différents types de spores qui en sont issus ?

Solution

1. La souche [ade–; his–] doit être cultivée sur un milieu minimum (Mo) additionné d’adénine et d’histidine puisqu’elle est auxotrophe pour ces deux molécules; la souche [leu–] est cultivée sur Mo + leucine. Mais le croisement peut et doit se faire sur milieu Mo, ainsi les spores haploïdes ne peuvent développer des colonies et on est sûr que les colonies récupérées sont diploïdes, ayant pu pousser grâce à la complémentation fonctionnelle pour les trois mutations d’auxotrophie.

Ces mutations servent de « marqueurs de sélection » des diploïdes.

2. La méiose peut suivre quatre scénarios qui correspondent aux diverses dispositions métaphasiques possibles des gènes entre eux.

Si on considère d’abord les gènes A et B (pris indépendamment de C), on a deux scénarios possibles de la méiose (fig. 10.1 et fig. 10.2), selon les deux dispositions métaphasiques équifréquentes correspondant à l’assortiment aléatoire des paires de chromatides non homologues.

Si on considère le gène C par rapport au gène B, chacun des deux scénarios précédents se subdivise en deux sous-scénarios selon qu’il y a (fig. 10.1 et 10.2, à droite) ou qu’il n’y a pas (fig. 10.1 et 10.2, à gauche) un crossing-over entre B et C.

Remarque. Il n’y a pas d’autre scénario possible car les deux gènes A et B sont proches de leurs centromères respectifs; il n’y a donc pas de crossing-over possible entre le locus d’un gène et son centromère, ce qui conduirait une même méiose à produire quatre types de gamètes différents, deux parentaux plus deux recombinés.

Les phénotypes des spores sont faciles à déduire de la présence ou de l’absence des mutations d’auxotrophie (tabl. ci-dessous, colonnes 1 et 2), sachant qu’il existe huit combinaisons possibles issues du brassage génétique pour trois gènes dialléliques (23 !).

ENSEMBLE DES GÉNOTYPES POSSIBLES DES SPORES ISSUES DES MÉIOSES DÉCRITES FIGURES 10.1 ET 10.2.

Remarque. Une spore (gamète) comme (a; B; C) peut être parentale relativement à deux gènes (ici le couple de gènes A et B) et recombinées relativement à deux autres (ici le couple de gènes A et C ou le couple de gènes B et C).

Figure 10.1 Première disposition métaphasique possible (scénario 1) de probabilité 1/2 sur l’ensemble des méioses. λ figure la probabilité d’avoir un crossing-over entre B et C.

Figure 10.2 Deuxième disposition métaphasique possible (scénario 2) de probabilité 1/2 sur l’ensemble des méioses. λ figure la probabilité d’avoir un crossing-over entre B et C.

3. Si on désigne par λ la probabilité d’avoir un crossing-over entre les locus des gènes B et C, alors les scénarios 1-a et 2-a ont, sur l’ensemble des méioses, une fréquence égale à (1 – λ), soit une fréquence individuelle égale à (1 – λ)/2, puisque chacun d’entre eux est équifréquent du fait de la disposition aléatoire des paires de chromatides non homologues, et la fréquence des scénarios 1-b ou 2-b est égale à λ /2.

La distance entre les locus des gènes B et C est égale à 20 unités de recombinaison, ce qui signifie que la fréquence des spores recombinées pour ces deux gènes est égale à 20 %.

Or ces spores recombinées, pour les gènes B et C, représentent la moitié des spores issues des méioses des scénarios 1-b et 2-b, ce qui signifie que (λ/2 + λ/2)/2 = 0,20, d’où λ = 0,40.

Chacun des scénarios 1-a et 1-b a une fréquence égale à 0,30, et chacun des scénarios 1-b et 2-b a une fréquence égale à 0,20.

Connaissant les fréquences des scénarios et les fréquences des différents types de spores qui en résultent, il est facile de calculer les fréquences des huit types possibles de spores (tabl. p. 269, colonne 3).

Remarque. Le fait que les locus des gènes A et B soient très proches de leurs centromères respectifs limite le nombre de scénarios possibles de méioses.

En effet, si le locus du gène A était situé assez loin de son centromère pour qu’un éventuel crossing over puisse survenir entre eux, on voit bien que chacun des quatre scénarios se subdiviserait de nouveau en deux cas, avec ou sans crossing-over entre A et son centromère. Cela ferait huit scénarios possibles, et même seize, si on admet qu’un crossing-over puisse aussi survenir entre le locus du gène B et son centromère.

Cela ne changerait pas le nombre de types différents de spores, qui resterait toujours égal à huit, mais cela changerait leurs fréquences respectives, en fonction des fréquences des différents scénarios.

Il convient en effet de noter que les scénarios 1-a et 2-a qui conduisaient toujours, pour les gènes A et B, à quatre gamètes parentaux, deux à deux identiques, ou à quatre gamètes recombinés, deux à deux identiques, conduiraient, dans le cas d’un éventuel crossing-over entre le locus du gène A et son centromère, à quatre gamètes tous différents, deux parentaux et deux recombinés.

Ce phénomène est facile à mettre en évidence chez certains organismes (champignons ascomycètes) où il est possible de faire l’analyse génétique des produits de chaque méiose isolément , ce qui n’est jamais le cas dans la plupart des espèces où l’analyse génétique est une analyse de gamètes en vrac, soit directe quand il s’agit de spores qui peuvent donner des clones ou des organismes haploïdes (mousses, champignons), soit indirecte, par des croisements, quand la phase haploïde est réduite aux gamètes (la plupart des végétaux, et les animaux).

Page :  1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9 - 10

  Envoyer par mail Envoyer cette page à un ami  Imprimer Imprimer cette page